Initializing Multisim Live ...

Waiting for awesome

Waiting for data
+-θTeEa 12.0VV1100µHL133.0µFC112.0mΩR_LESRR_CESR20.0mΩV_out46I_InductorS1D_idealI_LoadBasic Boost ConverterRun the simulation. Try the following... 1. Adjust the duty cycle using the voltage source "V_Duty" and observe the impact on the output voltage. Notice how the output voltage is equalto the 24V * duty.2. Adjust the value of the capacitor C1. What is the affect on the output voltage ripple?3. Slowly adjust the R_load resistor to change the load current. Does the output always remain at 5V? Observe the inductor current carefully4. Slowly adjust the value of the inductor. What is the effect?5. How does the capacitors ESR (Equivalent Series Resistors) impact the output? This parasitic resistor can be quite significant in the real world.U1400mVV_Duty70PR1PWM generator. Controls the Duty cycle of the PWM generator. 1V=100%.123M150Rmed1.00ΩPR28 V A A V V
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —

ID:

ID:

x10
x0.1
Sheet:1
Disable streaming
Details
Netlist
Errors
SPICE
SPICE Netlist

This is a text-based representation of the circuit.
The * symbol indicates a comment.
The + symbol indicates a continuation from the previous line.
Probes do not appear in netlists.

** Simple boost converter to motor **
*
* Multisim Live SPICE netlist
*
*

* --- Circuit Topology ---

* Component: C1
cC1 6 0 0.000033

* Component: D_ideal
xD_ideal 3 5 DIODE_IDEAL_D_ideal PARAMS: Vf=0 Rdon=0.001 Rdoff=10000000

* Component: L1
lL1 1 4 0.0001

* Component: M1
xM1 5 0 M1_NC_omega M1_NC_Te M1_NC_theta 8 DCM_EXT_M1 Params: La=0.002 Ra=10 Ke=0.003 Kt=0.003 J=0.0001 B=0.000001 ic_omega=0 ic_theta=0

* Component: R_CESR
rR_CESR 5 6 0.02 VIRTUAL_RESISTANCE_R_CESR

* Component: R_LESR
rR_LESR 4 3 0.012 VIRTUAL_RESISTANCE_R_LESR

* Component: Rmed
rRmed 8 0 1 VIRTUAL_RESISTANCE_Rmed

* Component: S1
xS1 3 0 2 TRANSISTOR_DIODE_S1 PARAMS: CtrlOn=5 TranRon=0.001 TranRoff=1000000 TranVon=0 DiodeRon=0.01 DiodeRoff=1000000 DiodeVon=0

* Component: U1
xU1 7 2 PWM_U1 PARAMS: Frequency=30000 TriangleMin=0 TriangleMax=1 OutputVoltage=5 RiseFallTime=1e-9 PwmMode=1

* Component: V1
vV1 1 0 dc 12 ac 0 0
+ distof1 0 0
+ distof2 0 0

* Component: V_Duty
vV_Duty 7 0 dc 0.4 ac 0 0
+ distof1 0 0
+ distof2 0 0


* --- Circuit Models ---

* R_CESR model
.model VIRTUAL_RESISTANCE_R_CESR r( )

* R_LESR model
.model VIRTUAL_RESISTANCE_R_LESR r( )

* Rmed model
.model VIRTUAL_RESISTANCE_Rmed r( )


* --- Subcircuits ---

* D_ideal subcircuit
.subckt DIODE_IDEAL_D_ideal a k params: Vf=0 Rdon=1m Rdoff=10meg
ad1 %vd(a k) %id(a k) diode1
.model diode1 pwl(x_array=[{Vf-1} {Vf} {Vf+1}] y_array=[{-1/Rdoff} 0 {1/Rdon}] fraction=false input_domain=0.0)
.ends

* M1 subcircuit
.subckt DCM_EXT_M1 V+ V- omega torque theta_out Ea_out Params: La=5e-005 Ra=0.2 Ke=0.03 Kt=0.03 J=0.0001 B=1e-6 ic_omega=0 ic_theta=0

**Rotor (or armature)**
R1 V+ 2 {Ra}
L1 2 Ea {La}
Ebackemf Ea V- Value ={v(omega)*Ke}

**Mechanical side
Gtorque 0 omega_ value = {I(Ebackemf)*Kt}
Vtorquesense omega_ omega 0
CIntertia omega 0 {J}
.ic v(omega)={ic_omega}
Rfriction omega 0 {1/B}

**Measurements
EtorqueSignal torque 0 value={I(Vtorquesense)}
Gtheta 0 theta omega 0 1
Ctheta theta 0 1
.ic v(theta)={ic_theta}

Etheta theta_out 0 value={v(theta)}
Ea_out Ea_out 0 value={V(Ea,V-)}

.ends

* S1 subcircuit
.subckt TRANSISTOR_DIODE_S1 upper lower ctrlp params: CtrlOn=1 TranRon=1 TranRoff=1 TranVon=1 DiodeRon=1 DiodeRoff=1 DiodeVon=1

s1 upper lower_ ctrlp 0 sw1
.model sw1 vswitch(Ron={TranRon} Roff={TranRoff} Von={CtrlOn} Voff=0)

Von lower_ lower {TranVon}

ad1 %vd(lower upper) %id(lower upper) diode1
.model diode1 pwl(x_array=[{DiodeVon-1} {DiodeVon} {DiodeVon+1}] y_array=[{-1/DiodeRoff} 0 {1/DiodeRon}] fraction=false input_domain=0.0)

.ends

* U1 subcircuit
.subckt PWM_U1 in out Params: Frequency=10k TriangleMin=0 TriangleMax=1 OutputVoltage=5 RiseFallTime=1e-9 PWMMode=1

Vf_switch f_switch 0 pulse({TriangleMin} {TriangleMax} 0 {1/2/Frequency} {1/2/Frequency} 0 {1/Frequency})
Acomp out in f_switch pcomp
.model pcomp precision_comparator(output_level={OutputVoltage} rise_fall_time={RiseFallTime} pwm_mode={PWMMode}
+ sawtooth_period={1/Frequency} sawtooth_minimum={TriangleMin} sawtooth_maximum={TriangleMax} peak_time={1/2/Frequency})

.ends

Errors and Warnings

Any error, warning or information messages appear below.

Item
Document

Checkboxes toggle displayed values on and off.

Simple boost converter to motor
Schematic

The simulation to run. See Simulation types for more information.

Name

Title of graph. Edit as desired.

End time

s

Time at which the simulation stops. Does not include pauses. Simulation does not occur in real time.

Start simulation

Mode

Threshold voltage levels.

Threshold voltage values used in the logic evaluation. See Digital Simulation for more information.

Output low

V

Output low voltage.

Maximum output voltage level to produce a low signal.

Input low threshold

V

Input low threshold voltage.

Maximum input voltage level for the signal to be considered low.

Input high threshold

V

Input high threshold voltage.

Minimum input voltage level for the signal to be considered high.

Output high

V

Output high voltage.

Minimum output voltage level to produce a high signal.

Width

Sheet width in grid squares.

Height

Sheet height in grid squares.

Grid

Toggles grid display.

Net Labels

Toggles all net labels.

Component Labels

Toggles all component labels.