Initializing Multisim Live ...

Waiting for awesome

Waiting for data
MCR08BT1GD19V1kHz0°V112VX112.2kΩR12500kΩ28.5%R235kΩR34D250PR3PR1PR2PR4 VA VA VA VA
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —
Out of date
V —
V —
VPP —
VRMS —
VAV —
fV —
I —
I —
IPP —
IRMS —
IAV —
fI —
D —

ID:

ID:

x10
x0.1
Sheet:1
Disable streaming
Details
Netlist
Errors
SPICE
SPICE Netlist

This is a text-based representation of the circuit.
The * symbol indicates a comment.
The + symbol indicates a continuation from the previous line.
Probes do not appear in netlists.

** 3 **
*
* Multisim Live SPICE netlist
*
*

* --- Circuit Topology ---

* Component: D1
xD1 2 5 0 MCR08MT1/ON_D1

* Component: D2
dD2 4 5 DIODE_D2 AREA=1

* Component: R1
rR1 2 3 2200 VIRTUAL_RESISTANCE_R1

* Component: R2
xR2 4 3 3 Potentiometer_R2 PARAMS: res=500000 posPercent=28.5

* Component: R3
rR3 4 0 5000 VIRTUAL_RESISTANCE_R3

* Component: V1
vV1 1 0 dc 0 ac 1 0
+ distof1 0 0
+ distof2 0 0
+ sin ( 0 9 1000 0 0 0 )

* Component: X1
xX1 1 2 VIR_LAMP_X1


* --- Circuit Models ---

* D2 model
.model DIODE_D2 D( IS=1e-14 RS=0 N=1 BV=1e+30
+ TT=0 CJO=0 VJ=1 M=0.5 EG=1.11 XTI=3 KF=0 AF=1 FC=0.5 IBV=1e-10
+ IBVL=0 IKF=1e+30 ISR=0 NBV=1 NBVL=1 NR=2 TBV1=0 TBV2=0 TIKF=0
+ TRS1=0 TRS2=0
+ )

* R1 model
.model VIRTUAL_RESISTANCE_R1 r( )

* R3 model
.model VIRTUAL_RESISTANCE_R3 r( )


* --- Subcircuits ---

* D1 subcircuit
*$
.subckt MCR08MT1/ON_D1 anode gate cathode PARAMS:
**************************************
* Model Generated by EVAL LAB *
* July 23, 2003 *
* Copyright(c) On Semiconductor *
* All Rights Reserved *
*Commercial Use or Resale Restricted *
**************************************
*SCR
*MODEL FORMAT: PSpice
+ Vdrm=600v Vrrm=600v Idrm=10u
+ Ih=2.5ma dVdt=10e6
* Vgt must be greater than 0.65v
+ Igt=6.5ua Vgt=0.66v
+ Vtm=1.4v Itm=1.0
+ Ton=2u Toff=15u

* Where:
* Vdrm => Forward breakover voltage
* Vrrm => Reverse breakdown voltage
* Idrm => Peak blocking current
* Ih => Holding current
* dVdt => Critical value for dV/dt triggering
* Igt => Gate trigger current
* Vgt => Gate trigger voltage
* Vtm => On-state voltage
* Itm => On-state current
* Ton => Turn-on time
* Toff => Turn-off time

* Main conduction path
Scr anode anode0 control 0 Vswitch ; controlled switch
Dak1 anode0 anode2 Dakfwd OFF ; SCR is initially off
Dka cathode anode0 Dkarev OFF
VIak anode2 cathode ; current sensor

* dVdt Turn-on
Emon dvdt0 0 TABLE {v(anode,cathode)} (0 0) (2000 2000)
CdVdt dvdt0 dvdt1 100pfd ; displacement current
Rdlay dvdt1 dvdt2 1k
VdVdt dvdt2 cathode DC 0.0
EdVdt condvdt 0 TABLE {i(vdVdt)-100p*dVdt} (0 0 ) (.1m 10)
RdVdt condvdt 0 1meg

* Gate
Rseries gate gate1 {(Vgt-0.65)/Igt}
Rshunt gate1 gate2 {0.65/Igt}
Dgkf gate1 gate2 Dgk
VIgf gate2 cathode ; current sensor

* Gate Turn-on
Egate1 gate4 0 TABLE {i(Vigf)-0.95*Igt} (0 0) (1m 10)
Rgate1 gate4 0 1meg
Egon1 congate 0 TABLE {v(gate4)*v(anode,cathode)} (0 0) (10 10)
Rgon1 congate 0 1meg

* Main Turn-on
EItot Itot 0 TABLE {i(VIak)+5E-5*i(VIgf)/Igt} (0 0) (2000 2000)
RItot Itot 0 1meg
Eprod prod 0 TABLE {v(anode,cathode)*v(Itot)} (0 0) (1 1)
Rprod prod 0 1meg
Elin conmain 0 TABLE
+ {10*(v(prod) - (Vtm*Ih))/(Vtm*Ih)} (0 0) (2 10)
Rlin conmain 0 1meg

* Turn-on/Turn-off control
Eonoff contot 0 TABLE
+ {v(congate)+v(conmain)+v(condvdt)} (0 0) (10 10)

* Turn-on/Turn-off delays
Rton contot dlay1 825
Dton dlay1 control Delay
Rtoff contot dlay2 {290*Toff/Ton}
Dtoff control dlay2 Delay
Cton control 0 {Ton/454}

* Reverse breakdown
Dbreak anode break1 Dbreak
Dbreak2 cathode break1 Dseries

* Controlled switch model
.MODEL Vswitch vswitch
+ (Ron = {(Vtm-0.7)/Itm}, Roff = {Vdrm*Vdrm/(Vtm*Ih)},
+ Von = 5.0, Voff = 1.5)

* Diodes
.MODEL Dgk D (Is=1E-16 Cjo=50pf Rs=5)
.MODEL Dseries D (Is=1E-14)
.MODEL Delay D (Is=1E-12 Cjo=5pf Rs=0.01)
.MODEL Dkarev D (Is=1E-10 Cjo=5pf Rs=0.01)
.MODEL Dakfwd D (Is=4E-11 Cjo=5pf)
.MODEL Dbreak D (Ibv=1E-7 Bv={1.1*Vrrm} Cjo=5pf Rs=0.5)

* Allow the gate to float if required
Rfloat gate cathode 1e10

.ENDS

* R2 subcircuit
.subckt Potentiometer_R2 T1 T2 T3 PARAMS: res=10k posPercent=50
.PARAM relPos = limit(posPercent * 0.01, 0.0000001, 0.9999999)
r1 T1 T2 {{res}*relPos}
r2 T2 T3 {{res} - {res}*relPos}
.ends

* X1 subcircuit
.subckt VIR_LAMP_X1 port1 port2

** resistance of the lamp when conducting current
.param lampResistance = {12^2/10}

** resistance of the lamp after burning out
.param blownResistance = 10e6

** blown signal appears on node blown. 5V = blown, 0 = not
Rdummy blown 0 1000000

** Constant digital high to feed as input to latch
aU2 dU1.DATA d_constsource_U2
.model d_constsource_U2 d_constsource(state=1)

**D-latch to latch state
aU1 dU1.DATA
+ dU1.EN
+ U1_OPEN_SET
+ U1_OPEN_RESET
+ dU1.Q
+ U1_OPEN_notQ D_LATCH

** Output of latch onto node `blown` through DAC
xU1.Q dU1.Q blown TIL_DRV

** Input node `trigger` to latch ENABLE through ADC
xU1.CLK trigger dU1.EN TIL_RCV

** If over blown voltage, trigger DLATCH U1 enable
E2 trigger 0 Value = { if(abs(V(port1, port2)) > 15 & Time > 0, 5, 0) }

** Modelling LIT and HOT states
blit lit 0 v={if(abs(V(port1, port2)) <= 12, {abs(V(port1, port2)) / 12}, 1)}
bhot hot 0 v={abs(V(port1, port2)) >= 12}

** Current sensor
V_Isense port1 lampSense 0

** model of the lamp as a G source so we can change the resistance on the fly
G_Lamp lampSense port2 value = { if( V(blown) < 2.5, V(port1, port2) / lampResistance, V(port1, port2) / blownResistance )}

.subckt TIL_DRV 1 2
* TIL Driver Model 1= D/A input, 2 = out
aDACin1 [1] [2] aDAC
.model aDAC dac_bridge (out_low = 0 out_high = 5 out_undef = 2.5)
.ends

.subckt TIL_RCV 1 2
* TIL Receiver Model 1 = input, 2 = A/D out
aADCin1 [1] [2] ADC
.model ADC adc_bridge (in_low = 2.5 in_high = 2.5)
.ends

.model D_LATCH d_dlatch (data_delay = 1n enable_delay = 1n
+ set_delay = 1n reset_delay = 1n
+ ic = 0 rise_delay = 1n fall_delay = 1n)

.ends

Errors and Warnings

Any error, warning or information messages appear below.

Item
Document

Checkboxes toggle displayed values on and off.

3
Schematic

The simulation to run. See Simulation types for more information.

Name

Title of graph. Edit as desired.

End time

s

Time at which the simulation stops. Does not include pauses. Simulation does not occur in real time.

Start simulation

Mode

Threshold voltage levels.

Threshold voltage values used in the logic evaluation. See Digital Simulation for more information.

Output low

V

Output low voltage.

Maximum output voltage level to produce a low signal.

Input low threshold

V

Input low threshold voltage.

Maximum input voltage level for the signal to be considered low.

Input high threshold

V

Input high threshold voltage.

Minimum input voltage level for the signal to be considered high.

Output high

V

Output high voltage.

Minimum output voltage level to produce a high signal.

Width

Sheet width in grid squares.

Height

Sheet height in grid squares.

Grid

Toggles grid display.

Net Labels

Toggles all net labels.

Component Labels

Toggles all component labels.